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Summary 
Early phase trials and innovative care draw support from basic science, preclinical studies, and 
clinical research. Such evidential diversity presents a challenge for traditional ways of synthesis-
ing evidence. In what follows, we review the limitations of existing approaches for communi-
cating supporting evidence for early phase trials. We then offer a structured approach, PATH 
(Preclinical Assessment of Translation to Humans). PATH is grounded on the premise that the 
case for administering novel strategies to patients requires connecting the dots between nine 
mechanistic steps supporting a clinical claim. Using PATH entails first parsing supporting evi-
dence, assessing the strength of evidence at each step, and then assessing the strength of a chain 
of evidence linking drug administration to clinical effect. While PATH requires further refine-
ment, the approach reduces some of the opacity, arbitrariness, and bias in current ways of pre-
senting and assessing scientific support for early phase trials and innovative care. 
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Introduction 
Most new drugs, vaccines or devices are evaluated in large, randomized trials before uptake in 
clinical practice. To reach that point, new treatments must first be tested in early phase trials, 
including phase 1 trials (which evaluate safety and dosing) and phase 2 trials (which gather 
preliminary evidence of efficacy). Sometimes, innovative care is provided to patients absent any 
support from trials. 
 
Both early phase trials and innovative care must meet some threshold for probability of 
success. Absent that, they are unlikely to redeem toxicities or use resources efficiently1. 
However, neither early phase trials nor innovative care can draw on the strong forms of 
evidence that are used to support other decisions in medicine. Indeed, their justification rests 
on forms of evidence like mechanism studies2, preclinical studies, or case reports, each of which 
involve risk of bias and threats to reproducibility3–7. 
 
Various episodes suggest many early phase trials are launched without good reason to expect 
the drug will ultimately translate8–16. In one example, a healthy volunteer died and several 
others were injured after participating in a phase 1 trial that was later faulted for lacking 
preclinical support9. Other reasons to think some early phase trials rest on fragile supporting 
evidence include repeated observations that most preclinical studies fail replication, and that 
scientific justifications in protocols or publications of early phase trials often have gaps17,18. For 
innovative care, the abundance of clinics offering non-validated cell-based interventions for a 
variety of disorders19 suggest that support for novel treatment protocols is often weak. 
 
Despite the importance of a sound scientific rationale, formal approaches for building or 
assessing evidence supporting early phase trials or innovative care are lacking. This limits the 
ability of scientists, investigators, physicians and/or oversight committees to safeguard patients 
and maximize the impact of trying novel approaches for the first time in patients. 
 
In what follows, we offer a structured approach, PATH (Preclinical Assessment for Translation to 
Humans), that scientists can use to communicate the scientific rationale for early phase trials or 
innovative care. Similarly, physicians or oversight bodies can use the approach to assess novel 
treatment strategies.  
 
 
Current Standards for Presenting or Assessing Supporting Evidence 
Any approach to justifying a trial or novel care approach should meet four criteria. First, the 
approach - like others for assessing strength of evidence20 - should be structured. Structured 
approaches support efficient workflows and integrating different considerations into a decision. 
Second, the approach should be comprehensive in capturing relevant evidence. That way 
claims of clinical promise can draw on diverse methodologies and findings. Third, the approach 
should foster accurate judgments about the strength of evidence. Judgments about the risk, 
benefit and scientific value of a trial should scale with the number of supporting studies, their 
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rigour and the extent to which they address key gaps. Last, the approach should encourage 
transparency. That way, scientists and assessors can explain the basis for their judgments, and, 
when needed, isolate reasons for disagreement.  
 
The way trial protocols are currently written makes meeting these four criteria almost 
impossible. In Figure 1, we excerpt supporting evidence from a trial protocol (details are 
masked and text shortened for brevity). While protocols often contain narratives that make 
them easy to read, they often lack structures or information that support informed, critical and 
integrated appraisals.  
 
 

 
 
Figure 1: A representative description of supporting evidence for an early phase trial. In 
the above example, XYZ is a hypothetical gene that is believed to play a key role in cell growth 
and migration; Hyperactivation triggers a network of interrelated signaling pathways promoting 
cancer growth. Antonib is a hypothetical drug designed to inhibit XYZ activation. The above text 
is broadly representative of the kind of narrative review of evidence used to support early phase 
trials. Deficiencies in terms of structure, comprehensiveness and accuracy are indicated.  
 
 
 
Existing Approaches for Preclinical Evidence Synthesis 
Before developing PATH, we conducted a scan of various methods that are used- or that could 
be used- for evaluating supporting evidence in early phase trials. Though a systematic review of 
such approaches would be valuable, we did not opt for this approach owing to the many 

1.1 Pharmacology of Antonib 
Antonib is a novel XYZ inhibitor that blocks signaling. This leads to inhibition 
of the proliferation of tumor cells that overexpress these XYZ. Several 
malignancies, including lung and colorectal cancers, are associated with XYZ 
mutations. XYZ positive gliomas are more aggressive than XYZ-negative 
subtypes. 

1.2 Antonib Nonclinical Studies 
Antonib demonstrated potent XYZ inhibition in vitro, inhibition of cell growth 
in various human cancer cell lines, and inhibition of tumor growth rate in 
xenograft animal models. In enzyme-based, in vitro assays conducted in 
various human and mouse cancer cell lines, Antonib effectively inhibited XYZ 
with 50% inhibitory doses of 2.2 nM. In in vivo glioma models, Antonib 
blocked the phosphorylation of XYZ’s downstream target, ZIP.  Antonib also 
produced excellent anti-tumor effectiveness in xenograft models with two 
XYZ-dependent cancer cell lines, including glioma. Safety pharmacology 
studies of Antonib included a rat Irwin study and a cardiovascular telemetry 
study in dogs. The inhibition of human ether-a- go-go tail current observed in 
vitro was not predictive of cardiovascular effects in dogs. 

1.3 Antonib Clinical Studies 
Antonib was tested in 3 completed trials involving various advanced cancers. 
Pharmacodynamic studies showed decreases in XYZ phosphorylation. Clinical 
activity was observed in patients with various malignancies, as defined by 
objective responses or prolonged stabilization of disease. Patients experienced 
adverse events that were either expected for the underlying malignancies or 
commonly seen with other XYZ-targeted therapies. 

Accuracy: These statements provide vague language for 
magnitude, and do not explain the precision or risk of bias for 
studies. They therefore make accurate assessment difficult.

Structure: Text is organized by system, not claims needing to be 
established for the drug to be effective (e.g. that the drug engages 
its target or it activates physiological processes).

Claims about the drug’s affinity for its target are sandwiched 
between statements about the drug’s effect on a surrogate (i.e. 
tumour growth) in animals.

There is no evidence at all addressing the predictive value of 
animal models. 

Comprehensiveness: There is almost no evidence presented 
addressing whether XYZ causes glioma growth in patients. 
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philosophical judgments that would need to be made for designing literature searches, deciding 
which approaches would be applicable, and coding the content of such documents.  
 
The approaches we identified fall short on one or more of the criteria above. Various groups 
and scientific societies21–29 have offered approaches for assessing preclinical experiments (i.e. 
testing a drug’s effect in live animals). A more formal and influential approach has adapted the 
GRADE framework (used to assess strength of evidence in clinical medicine30) for rating the 
certainty of evidence for preclinical studies31,32. While these approaches are valuable, they have 
philosophical and pragmatic shortcomings for the task at hand. For example, they assign a 
secondary role for using mechanistic evidence. One document states “the GRADE framework 
does not explicitly address mechanistic data, but they may be used to inform judgments about 
indirectness.”33 The approaches provide minimal to no guidance for assessing mechanistic 
evidence, when it is used, or for assessing the predictive value of models. And yet much of the 
evidence used to support early phase trials involves discrete claims about pathophysiology. 
Such approaches are therefore not strong on comprehensiveness and accuracy. GRADE and 
other approaches above encourage a careful, study by study assessment of strength of 
evidence. However, they do not disarticulate and reassemble various constituent claims in a 
trial protocol such that key evidence gaps can be spotted. Another limitation of approaches like 
GRADE is that they are mainly aimed at decision-makers evaluating strength of evidence. 
However, they provide little prospective guidance for researchers seeking to assemble evidence 
to support an early phase trial or innovative care protocol. 
 
Regulators like the EMA34,35 and FDA36 offer guidance for preclinical evidence supporting early 
phase trials (the latter’s are only for gene and cell therapy). Though fairly comprehensive, these 
guidelines do not offer much structure. The EMA guidance does not address reproducibility 
threats, for example.  
 
Emmerich et al offers a “critical path” approach for target assessment37. Some pharmacologists 
have also offered similar critical path-like approaches for selecting starting doses for early 
phase trials38. These promote accuracy by pointing to validity threats and by decomposing 
information needed to support trial initiation, but they generally focus on only one aspect of 
trial decision-making (i.e. target assessment).  
 
Preclinical Assessment of Translation to Humans (PATH)  
PATH builds on recent work in philosophy of evidence-based medicine that has sought to 
restore a role for mechanism in evaluating the strength of evidence39,40. The main point of this 
literature is that traditional approaches to evidence-based medicine tend to deprioritize 
mechanistic evidence. However, knowledge of mechanism plays a key role in formulating 
judgments about the strength of a scientific claim. For example, parachutes have never been 
tested in randomized trials as a prophylactic against gravitational challenge41. Yet we have 
strong grounds, rooted in mechanism, for confidence in their efficacy. In many realms of 
medicine, most of the evidence for asserting a claim of efficacy or effectiveness rests primarily 
on mechanistic evidence. This is certainly the case in early phase research. Rather than 
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understanding mechanism as “evidence of last resort,” newer approaches to evidence-based 
medicine regard mechanism as complementary to evidence from well-designed trials. 
 
To develop PATH, we started by parsing the clinical effects of a drug into four steps that are 
common targets for separate investigations. The aim of experiments in model systems is to 
mirror these four steps in systems that have some predictive value for the clinical scenario. 
After developing the basic PATH approach, we sought review from a diverse panel of experts in 
evidence and early-stage translational research (see Appendix). We modified PATH based on 
these comments. 
 
The PATH approach offers a pragmatic device for helping experts organize, integrate, and 
interpret various evidentiary claims. It is not intended as a complete description of what is 
going on in experimental and target systems. PATH is founded on the premise that the case for 
pursuing early phase trials or innovative care requires connecting the dots from evidence of 
mechanism to clinical outcomes. Throughout this essay, we will illustrate our approach using a 
hypothetical trial of a novel XYZ inhibitor, “Antonib” that is being tested against glioma. 
 
The main task for assessing a proposal is to determine the level of confidence that a drug, when 
given to a target population, will produce a desired response (hereafter we call this the “target 
scenario”). In our example, the target scenario is that Antonib given to glioma patients will 
improve survival. The higher the confidence in efficacy in a target scenario, the more solid the 
ethical and scientific rationale for the endeavor42,43.  
 
Though the evidence used to support initial attempts at a novel therapy assumes a dizzying 
variety, supporting evidence can be parsed into nine mechanistic steps that, when pieced 
together, build a chain of evidence supporting the drug’s clinical promise. 
 
In Figure 2, we offer a PATH diagram that captures these nine steps. The left half of the diagram 
(“direct steps”) reflects mechanistic processes that need to occur for the drug to be effective in 
target patients. The right half (“model steps”) concerns parallel mechanistic processes in model 
systems (e.g. cell culture, animal experiments, or even trials of the same drug in related 
diseases). Horizontal arrows (“translational steps”) connect findings in model systems to target 
scenarios. Almost every piece of supporting evidence described in a typical protocol can be 
assigned to at least one of the steps in a PATH diagram.  
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Figure 2: PATH diagram. In the PATH approach, the goal is to trace a chain of evidence from 
administration of the drug in a target scenario (D0) through to a desired clinical effect (D3). For 
early phase trials and innovative care, other early phase trials or clinical experience may supply 
some direct (D) evidence of drug efficacy. However, much of the evidence creating a chain will 
derive from studies in model systems (M) coupled to evidence of translational (T) relevance.  
Text boxes provide examples of evidence that might support different steps.  
 
 
 
To assert potential efficacy in the target scenario, evidence within protocols must suggest at 
least one path through mechanistic steps, from administering the drug to achieving efficacy in 
target patients. At the point of early phase trials, direct steps on the left half of the PATH 
diagram can be only weakly substantiated using evidence from case reports or small trials. 
Sponsors must supplement this evidence using studies involving models and evidence of the 
relevance of those models.  
 
Direct and Model Steps 
Direct evidence for a drug’s promise typically comes from case reports or phase 0 or 1 studies. 
Model evidence derives from biochemical studies, in vitro experiments, preclinical studies and 
clinical trials.  
 
Though there are an infinite number of mechanistic steps between treatment and effect in 
target patients, the chain of events from drug administration to clinical effect can be described 
as being mediated through four major steps: administering a treatment (D0 or M0), engaging a 
drug target (D1 or M1), altering a pathophysiological process (D2 or M2), and producing a 
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clinical response (D3 or M3). This parsing of mechanistic steps reflects that drug developers 
generally build their efforts around a drug’s target, and use mediating physiological processes 
(e.g. for cancer, tumour shrinkage) as surrogates for clinical benefits like survival.  
 
In our example, researchers might establish that Antonib inhibits XYZ in vitro (M0 to M1). They 
also might establish that XYZ inhibition leads to tumour growth inhibition in mice (M1 to M2), 
and that tumour growth inhibition leads to greater survival in those mice (M2 to M3).  
 
Translational Steps 
Translational evidence is needed to connect model systems to target scenarios. This entails 
evidence that mechanisms driving the target clinical disorder are recapitulated in model 
systems.   
 
Evidence supporting translational steps often take three obvious forms. The first is evidence 
that model systems recapitulate mechanistic processes driving target disease44. Our Antonib 
protocol might provide evidence that XYZ activates a signal transduction cascade that leads to 
progression of glioma, and that this complete set of processes is present in the model. 
 
Second, translational steps can be supported by providing evidence that animal models, 
intervention doses or outcomes used in model systems reflect the target scenario (“construct 
validity”45). Several types of studies might be invoked for this. Toxicology, safety, and 
pharmacokinetic studies, for example, are essential to establishing the construct validity of 
interventions in preclinical studies, since efficacy in models is unlikely to carry over to humans if 
drugs are used at intolerable doses.  
 
Third, translational steps can be supported by explaining that effects of the drug have been 
observed in several different model systems. Such statements provide evidence that cause and 
effect relationships in model systems are robust against changes in context (“external 
validity”46). Other more subtle forms of translation evidence are described in Box 1. 
 
Applying PATH  
Generating the case for attempting a novel strategy (or the assessment thereof) occurs in three 
stages. First, supporting evidence is identified and assigned to steps in the PATH diagram. 
Second, the level of confidence for each step is assessed. Third, a cumulative judgment is 
rendered about the prospects that the intervention will show efficacy in the target scenario. In 
what follows, we describe how a sponsor might build the argument to initiate an early phase 
trial. A similar approach, however, might be used by a reviewer to retrospectively adjudicate 
that argument (in the Appendix, we offer an example of how PATH might be used by a reviewer 
to analyze evidence presented in a phase 2 trial protocol we accessed on ClinicalTrials.gov). 
 
Stage 1: Assigning Evidence to Steps 
Those making the case for an early phase trial or innovative care should begin by using the 
PATH diagram to systematically search for evidence supporting relevant steps. Assigning direct 
or model evidence to steps in the PATH diagram is generally straightforward. Any study testing 
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the effects of a treatment in the target population, like a prior early phase trial, contributes 
evidence to direct steps. Studies testing a treatment in a different but related disease, or in 
animal models, supply evidence for model steps. In some cases, a piece of evidence might skip 
steps: an experiment might show a drug leads to tumour inhibition in mice without, in the same 
experiment, showing evidence of target engagement (M0 to M2).  
 
Evidence can be assigned to translational steps if it addresses the relationship between models 
and target scenarios at relevant levels in the PATH diagram. Various types of evidence that 
might be used to support translational steps are offered in Box 1. 
 
Where possible, citations should be provided for each piece of evidence so that mechanistic 
claims can be investigated further. 
 
Box 1: Types of Evidence for Translational Steps 
 
Evidence substantiating a model system’s predictive value for a target scenario often takes the 
following five forms.  
 
The first is evidence supporting target disease pathophysiology (and along with it, reasons to 
believe such pathophysiology is recapitulated in model systems). This can establish that target 
inhibition within in vitro studies, or disruption of a pathophysiological process in an in vivo 
system will translate to a disease response in the target scenario. Examples of evidence taking 
this form would be a body of basic science research showing the role of some molecular 
process in driving human disease (e.g. papers showing XYZ overexpression drives glioma).  
 
The second is an explanation of relationships between various features of a model systems and 
those for the target scenario (“construct validity)47. For example, sponsors might address a) 
interventions used in model systems (e.g. are doses used in models representative of those 
tolerated in patients?); b) populations (e.g. do animal models recapitulate essential aspects of 
human pathophysiology?); and c) outcomes (e.g. do outcome measures, like performance on a 
rotarod test, provide a read-out of a human disease phenomena like Parkinsonism?).  
 
A third line is replication of effects in different model systems (“external validity”)46. For 
example, researchers might assert that their drug shows large effects in three different model 
systems. This suggests a robust causal process that has greater prospects of withstanding 
translation to a target scenario. 
 
Fourth is evidence suggesting the absence of “interfering effects” in the target scenario. 
Mechanisms that operate in both model and target scenarios can be attenuated in the latter if 
there is some other mechanism or context in the target system that counteracts an 
intervention’s effects. This might happen because a drug activates some other process that 
buffers the drug’s effect on a clinical outcome (e.g. development of resistance, or activation of 
metabolic processes that limits exposure to a drug). Or it might occur because a drug has 
intolerable side effects that lead to nonadherence, thus interfering with the translation of 
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preclinical findings. Studies showing the absence of such interference can reinforce the 
specificity of translational claims.  
 
The fifth evidence form is a systematic review of a model’s predictive value47. Using meta-
analysis, how well did preclinical studies using a particular system predict drug efficacy in 
patients?  
 
Stage 2: Assessing the Strength of Evidence at Each Step 
The next task is to assess the level of confidence for each step. With direct or model steps, this 
is facilitated by considering three factors, where possible. The first is magnitude. The second is 
the precision of the effect estimate. Information about precision might take various forms, 
including inferential statistics, confidence intervals around effects, or even simple statements 
about sample size). The third factor is risk of bias. The techniques for protecting internal validity 
in model experiments will be similar to those used for trials40, including use of randomization, 
prospective registration, and blinded outcome assessment45 (see elsewhere48,49 preclinical risk 
of bias assessment tools). For all other forms of evidence, measures for reducing risk of bias will 
depend on the experimental techniques.  
 
Assessing the level of confidence for translational steps is more complicated. However, it is 
often possible to assess this evidence in terms of the magnitude of relationships connecting 
models to target scenarios, as well as precision and risk of biases50. For example, sponsors 
frequently assert that certain cancers are driven by an oncogene based on the level of the 
oncogene’s expression in resected tumours. However, such evidence is susceptible to confound 
because it is derived from observational studies. Confidence would be greater if such claims 
derived from experimental manipulations of resected tissues. The diagnostic concepts of 
specificity and sensitivity can also be useful for assessing models. Further information on 
assessing the level of confidence for translational steps is offered in Table 1. 
 
To synthesize judgments, PATH diagrams can be colour coded at each step40, using green to 
designate high confidence steps and red to indicate an absence of supporting evidence. This 
can facilitate the next stage for PATH. 
 
Stage 3: Combining Judgments About Strength of Evidence  
At this point, evidence supporting a novel therapeutic strategy can be represented with an 
annotated PATH diagram (see Figure 3). This information can then be used to assess support for 
the overall proposal.  
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Figure 3: A PATH description of supporting evidence. The contents of Box 1 are displayed 
with an annotated PATH diagram (with supplementation of missing information). Colour coding 
represents the assessor’s judgment about strength of evidence (red = weak support; yellow = 
equivocal support; solid green = strong support). Numbers in PATH diagram correspond to 
evidence presented in juxtaposed text; superscripted primes indicate construct validity 
information provided in studies assigned to model evidence. 
 
What is key is that there is at least one chain of evidence linking administration of the drug (at 
M0 or D0) to clinical effects in the target scenario (D3). Not all steps need to be populated for 
evidence to be strong. Also, there may be cases where a chain of evidence skips over a direct or 
model step (for example, where there are no measures of physiological outcomes). That does 
not necessarily undermine the overall confidence in the strategy, provided there is evidence 
supporting translation from models to target scenarios at the clinical level.  
 
Assertions of a drug’s value in the target scenario will often be limited by the PATH steps that 
have the weakest support for a chain of evidence (see Figure 4). Scientists might use additional 
studies to fortify a weak link in a chain of evidence. Alternatively, they might seek evidence that 
supplements a weak chain by building another chain in the PATH diagram.  
 

TARGET MODULATION IN MODELS (M0-M1)
1. Antonib IC50 inhibition of XYZ is 2.2 nM. 
2. In randomized xenograft glioma models (see #6 below), Antonib led to 157% lowered expression of a ZIP, a downstream target of XYZ.
TRANSLATABILITY (T1)
3. Antonib crossed the blood brain barrier at a rate that was 20% more efficient than morphine.
4. 70% of tumours resected from glioma patients show of XYZ overexpression in blinded pathology studies.
5. Doses needed to achieve target inhibition in models, when scaled to patients, did not cause any SAEs in studies involving 20 patients.

PHYSIOLOGICAL EFFECT IN MODELS (M1-M2)
6. Antonib given to 8 of 9 different types of glioma cell lines showed growth inhibition of 60% or more.
7. Randomized studies of Antonib in glioma-bearing orthotopic mice significantly shrank by 50% compared with temazolomide. Results 

were reproduced three times.
8. Antonib given to patients with lung or colorectal cancers resulted in ≥ 40% objective response (tumour assessments were blinded).
TRANSLATABILITY (T2)
7’. Glioma-bearing orthotopic mice are sensitive, but not specific models for human glioma. Doses in this study were similar to those 

planned for this trial
8’. Lung and colorectal cancers are driven by XYZ over-activation. Doses used in the above (and present) trial were tolerable (5% of 

patients experienced serious adverse events)
9. Glioma progression is driven by XYZ hyperactivation, as indicated by several independent studies showing knock-down of XYZ in 

glioma cells inhibits growth by 70% (p < .05).
10. Robustness of Antonib anti-tumour activity is suggested by achievement of significantly reduced tumour growth (>50% shrinkage)  

in randomized xenograft studies of three different cancers types.

CLINICAL EFFECT IN MODELS (M2-M3)
11. Antonib significantly doubled survival in randomized, blinded studies of glioma xenograft mice.
TRANSLATABILITY (T3)
11’. Doses of Antonib in #10 matched those planned for this trial. The model is very sensitive but not very specific for predicting 

human response.

TARGET MODULATION IN THE TARGET SCENARIO (D0-D1)
12. Antonib significantly doubled XYZ phosphorylation in gliomas resected from patients in a phase 0 trial.

PHYSIOLOGICAL EFFECT IN THE TARGET SCENARIO (D1-D2)
13. Antonib produced a partial response in one of two glioma patients in a phase 1 trial involving mixed cancers.

CLINICAL EFFECT IN THE TARGET SCENARIO (D2-D3)
14. A meta-analyses of glioma trials showed tumour response was moderately but significantly correlated with increased overall 

survival (R2=0.4). 
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Figure 4. Completing a mechanistic path to clinical effect. Two scenarios illustrate how 
PATH diagrams can be used to map mechanistic steps towards clinical effects. The scenarios 
also illustrate how PATH can be used to improve the preparation and/or discussion of supporting 
evidence. In scenario A, researchers prepare a PATH diagram, and find it wanting on a crucial 
step. This provides an occasion to gather more evidence to strengthen support for the trial. In 
scenario B, a research team presents a PATH diagram that seems to provide strong support. Note 
that there are two paths from drug administration to clinical effect involving at least moderately 
strong evidence at each step. The first is from M0 to M1, with a T1 step leading to achievement 
of D1. The second is from M0 to M1 to M2, with a T2 step leading to achievement of D2. The 
fact that there are two moderately strong paths bolsters the case for this drug. However, a 
reviewer has raised concerns about the precision, bias and inconsistent findings from model 
studies. These concerns now provide a basis for focusing discussions on the strength of evidence 
for the intervention. 
 
 
 
Discussion 
PATH offers a general approach for presenting evidence that a new treatment will deliver on its 
promise (alternatively, it can be used in review to assess the strength of a trial proposal). By 
parsing evidence into nine mechanistic steps and showing how they articulate, it offers 
structure. By soliciting evidence for each step, including translational claims, it encourages 
comprehensiveness. PATH fosters accuracy by encouraging consideration of magnitude, 
precision, and risk of bias. It also fosters accuracy by exploiting the value of decomposing 
complex questions (i.e. whether a drug will eventually prove effective) into smaller sub-
questions (i.e. whether a drug engages its target) and reassembling them. Decomposition has 
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2. Isolating disagreement: An expert 
reviewing the same protocol has serious 
doubts. They point out that studies supporting 
effects on physiological outcomes in models 
(M0 to M2) do not provide information on 
magnitude, and sample sizes were small given 
the variance of the measure. They further note 
that large trials of the drug in a similar 
neurological illness produced null results. They 
present evidence suggesting the two 
neurological diseases share a common 
pathophysiology.  They therefore prompt a 
discussion of whether the M1-M2 step should 
really be green, and whether the T2 step should 
instead be orange.

Model
Steps

Translational
Steps

Direct
Steps

A.

B.
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been shown to foster more accurate judgments where uncertainty is high51. Finally, PATH 
promotes transparency: when assessors disagree, annotated PATH diagrams can help scientists 
isolate sources of disagreement, thus centering discussions and further research.  
 
The PATH approach does, however, have limitations that necessitate further work and/or 
extension. Here, we lay out what we regard as the six most important ones, and possible 
avenues for addressing each. 
 
First, some might regard PATH as impractical. Clinical investigators may chafe at presenting 
supporting evidence in a new format, and IRBs might find PATH overly exacting. These 
downsides must be considered against the value of encouraging more rigorous and transparent 
processes. These concerns might be addressed in future work by creating protocol templates 
for investigators and using software for creating PATH diagrams.   
 
A second limitation is that presenting evidence for translational edges is difficult. Others 
offering approaches for assessing preclinical evidence have similarly struggled with this 
challenge (see, for example, Hooijmans et al31). Further work will be needed to develop a 
structure for presenting translational evidence.  
 
Third, our approach does not provide a cookbook for constructing or evaluating supporting 
evidence. As noted, mechanistic and translational evidence draw on a variety of methodologies, 
each presenting different internal validity threats or notions of what constitutes a large effect 
size. However, our goal is not to erase the need for expertise, but rather to provide a 
scaffolding for its effective application.  
 
Fourth, PATH should be understood as a way of mapping evidence. In doing so, PATH diagrams 
simplify or even distort complex causal processes to facilitate their critical engagement- much 
as a city metro map simplifies spatial relationships in a city to facilitate navigation. Each step in 
a PATH diagram could be exploded in greater detail or customized to specific contexts. For a 
vector-based gene therapy to work, the vector must transfect the appropriate cells and cause 
stable transgene expression before modifying a disease course. PATH diagrams for gene 
therapy trials might benefit by the addition of levels for transfection and gene expression. Also, 
PATH necessitates simplifying some types of evidence. A study showing that a drug causes 
disease response in animal models (M0-M2) would, for the sake of simplicity, be represented in 
the M1-M2 step of a PATH diagram. 
 
Fifth, the assertion that PATH will improve transparency, accuracy, or evidence 
comprehensiveness is an empirical claim that is, perhaps ironically, grounded solely on 
mechanistic evidence. To achieve these ends, workflows for using PATH will need to be 
developed. These workflows will need to be tested in randomized trials against standard 
narrative evidence presentations to determine whether they in fact support more judgments 
that are more transparent, accurate and based on a comprehensive gathering of evidence. 
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Last, PATH will benefit from further expert input, refinement, and interpretation. This might be 
achieved by establishing working groups akin to those used to develop and refine GRADE. The 
present manuscript should be seen as an initial step in that process. 
 
 
Conclusion 
The justification for administering novel and unproven interventions- whether in research or 
care- rests in part on supporting evidence. Early phase trials and innovative care vary in the 
strength of evidence supporting them. Because supporting evidence takes many different 
forms, common techniques for synthesizing evidence and assessing its strength, like meta-
analysis, have limited value. This greatly complicates the task of communicating and or 
assessing the promise of such endeavours.  
 
Despite this variety of evidence, supporting evidence has a common basic structure. PATH aims 
at surfacing this structure to help scientists and others arrive at transparent judgments that 
reflect comprehensive use of evidence and accurate levels of confidence about achieving 
clinical goals. Absent a PATH-like approach, unstructured processes that prevail today are 
susceptible to arbitrary, opaque, and biased decisions. 
 
END  
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Table 1: Assessing the Strength of Evidence for Translational Steps 
 
Forms of 
Evidence 

Examples of State-
ments addressing 
Translational Steps 

Magnitude Precision Bias 

Description 
of disease 
mechanism  

Overactive XYZ expression 
suppresses apoptosis, thus 
promoting survival and 
growth of tumour tissue. 

Extent to which vari-
ous experiments point 
to the presence and 
influence of this 
mechanism as a driver 
of disease. 

Number of conditions 
or settings where this 
purported mechanism 
has been observed to 
strongly drive out-
comes 

Are there reasons to think 
evidence supporting a 
mechanism is biased (e.g. 
negative studies not re-
ported, or mechanistic evi-
dence based on correlative 
evidence, not causal evi-
dence?) 

Description 
of Model 
Systems 
(Construct 
validity) 

We delivered 0.10 mg Anto-
nib to immunocompetent, 
genetically engineered 
mouse models of breast 
cancer. 

NA (already assessed 
at vertical steps) 

NA (already assessed 
at vertical steps) 

Are there any ways the 
model experiments might 
over-predict benefit in a 
target (e.g. higher than tol-
erable doses used in mod-
els? animal model prone to 
exaggerated responses?) 

Replication 
in Different 
Models (Ex-
ternal valid-
ity) 

Experiments in mice and 
pigs showed reduction in 
accumulation of plaque 

Extent to which repli-
cation studies showed 
similarly meaningful 
effect sizes 

Number of different 
replication studies 

Is it possible some replica-
tion studies in models were 
negative, but not reported? 

Absence of 
interfering 
effects 

When given to patients, 
drug X does not trigger in-
flammatory processes that 
limit the ability of lympho-
cytes to tissues. 

Extent to which ex-
periments  rules out 
the presence of an in-
terferng  mechanism 

Number of observa-
tions where interfer-
ing mechanism not 
observed 

Are there ways experi-
ments might under-detect 
interfering  mechanisms? 
Have researchers failed to 
address interfering mecha-
nisms? 

Evidence of 
Predictivity 

Meta-analysis showed a 
strong linear relationship 
between effects of interac-
tions in models and humans 

Slope of correlation 
between effect sizes 
in models and target 
systems 

Level of variance for 
strength of correlation 

Did the meta-analysis use 
proper registration and in-
clusion criteria? Were risk 
of bias analyses per-
formed? 
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